metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C22×C4)⋊1F5, (C22×C20)⋊5C4, C23.D5⋊6C4, C23⋊F5.2C2, C2.4(C23⋊F5), C23.18(C2×F5), C23.F5.2C2, (C2×Dic5).11D4, (C22×D5).11D4, C5⋊2(C23.D4), C10.13(C23⋊C4), C22.18(C22⋊F5), C23.23D10.1C2, (C22×C10).45(C2×C4), (C2×C5⋊D4).85C22, (C2×C10).29(C22⋊C4), SmallGroup(320,254)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C23⋊F5 — (C22×C4)⋊F5 |
Generators and relations for (C22×C4)⋊F5
G = < a,b,c,d,e | a2=b2=c4=d5=e4=1, ab=ba, ac=ca, ad=da, eae-1=abc2, bc=cb, bd=db, ebe-1=bc2, cd=dc, ece-1=abc-1, ede-1=d3 >
Subgroups: 378 in 68 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic5, C20, F5, D10, C2×C10, C2×C10, C23⋊C4, C4.D4, C22.D4, C5⋊C8, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×F5, C22×D5, C22×C10, C23.D4, C10.D4, D10⋊C4, C23.D5, C22.F5, C22⋊F5, C2×C5⋊D4, C22×C20, C23⋊F5, C23.F5, C23.23D10, (C22×C4)⋊F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C23⋊C4, C2×F5, C23.D4, C22⋊F5, C23⋊F5, (C22×C4)⋊F5
Character table of (C22×C4)⋊F5
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 2 | 4 | 20 | 4 | 4 | 20 | 40 | 40 | 40 | 4 | 40 | 40 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | 1 | i | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | 1 | -i | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -1 | -i | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | -1 | i | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 4 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ12 | 4 | 4 | 4 | 4 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ13 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ14 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -√5 | -√5 | √5 | -√5 | -√5 | √5 | √5 | √5 | orthogonal lifted from C22⋊F5 |
ρ15 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | √5 | √5 | -√5 | √5 | √5 | -√5 | -√5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ16 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | -√5 | √5 | √5 | -√5 | 1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ52+2ζ5+1 | complex lifted from C23⋊F5 |
ρ17 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | -√5 | √5 | √5 | -√5 | 1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ53+1 | complex lifted from C23⋊F5 |
ρ18 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 2i | -2i | -2i | -2i | -2i | 2i | complex lifted from C23.D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | -2i | 2i | 2i | 2i | 2i | -2i | complex lifted from C23.D4 |
ρ20 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | √5 | -√5 | -√5 | √5 | 1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ53+2ζ5+1 | complex lifted from C23⋊F5 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | √5 | -√5 | -√5 | √5 | 1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ52+1 | complex lifted from C23⋊F5 |
ρ22 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -√5 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | √5 | 2ζ43ζ5+ζ43 | 2ζ43ζ54+ζ43 | 2ζ43ζ52+ζ43 | 2ζ4ζ5+ζ4 | 2ζ4ζ54+ζ4 | 2ζ4ζ52+ζ4 | 2ζ4ζ53+ζ4 | 2ζ43ζ53+ζ43 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | √5 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | -√5 | 2ζ4ζ52+ζ4 | 2ζ4ζ53+ζ4 | 2ζ4ζ54+ζ4 | 2ζ43ζ52+ζ43 | 2ζ43ζ53+ζ43 | 2ζ43ζ54+ζ43 | 2ζ43ζ5+ζ43 | 2ζ4ζ5+ζ4 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -√5 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | √5 | 2ζ4ζ54+ζ4 | 2ζ4ζ5+ζ4 | 2ζ4ζ53+ζ4 | 2ζ43ζ54+ζ43 | 2ζ43ζ5+ζ43 | 2ζ43ζ53+ζ43 | 2ζ43ζ52+ζ43 | 2ζ4ζ52+ζ4 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | √5 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | -√5 | 2ζ43ζ53+ζ43 | 2ζ43ζ52+ζ43 | 2ζ43ζ5+ζ43 | 2ζ4ζ53+ζ4 | 2ζ4ζ52+ζ4 | 2ζ4ζ5+ζ4 | 2ζ4ζ54+ζ4 | 2ζ43ζ54+ζ43 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | √5 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | -√5 | 2ζ4ζ53+ζ4 | 2ζ4ζ52+ζ4 | 2ζ4ζ5+ζ4 | 2ζ43ζ53+ζ43 | 2ζ43ζ52+ζ43 | 2ζ43ζ5+ζ43 | 2ζ43ζ54+ζ43 | 2ζ4ζ54+ζ4 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | √5 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | -√5 | 2ζ43ζ52+ζ43 | 2ζ43ζ53+ζ43 | 2ζ43ζ54+ζ43 | 2ζ4ζ52+ζ4 | 2ζ4ζ53+ζ4 | 2ζ4ζ54+ζ4 | 2ζ4ζ5+ζ4 | 2ζ43ζ5+ζ43 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -√5 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | √5 | 2ζ43ζ54+ζ43 | 2ζ43ζ5+ζ43 | 2ζ43ζ53+ζ43 | 2ζ4ζ54+ζ4 | 2ζ4ζ5+ζ4 | 2ζ4ζ53+ζ4 | 2ζ4ζ52+ζ4 | 2ζ43ζ52+ζ43 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -√5 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | √5 | 2ζ4ζ5+ζ4 | 2ζ4ζ54+ζ4 | 2ζ4ζ52+ζ4 | 2ζ43ζ5+ζ43 | 2ζ43ζ54+ζ43 | 2ζ43ζ52+ζ43 | 2ζ43ζ53+ζ43 | 2ζ4ζ53+ζ4 | complex faithful |
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)
(1 46 6 41)(2 47 7 42)(3 48 8 43)(4 49 9 44)(5 50 10 45)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 31 26 36)(22 33 30 39)(23 35 29 37)(24 32 28 40)(25 34 27 38)(41 61 51 76)(42 63 55 79)(43 65 54 77)(44 62 53 80)(45 64 52 78)(46 66 56 71)(47 68 60 74)(48 70 59 72)(49 67 58 75)(50 69 57 73)
G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)(41,61,51,76)(42,63,55,79)(43,65,54,77)(44,62,53,80)(45,64,52,78)(46,66,56,71)(47,68,60,74)(48,70,59,72)(49,67,58,75)(50,69,57,73)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80), (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)(41,61,51,76)(42,63,55,79)(43,65,54,77)(44,62,53,80)(45,64,52,78)(46,66,56,71)(47,68,60,74)(48,70,59,72)(49,67,58,75)(50,69,57,73) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)], [(1,46,6,41),(2,47,7,42),(3,48,8,43),(4,49,9,44),(5,50,10,45),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,31,26,36),(22,33,30,39),(23,35,29,37),(24,32,28,40),(25,34,27,38),(41,61,51,76),(42,63,55,79),(43,65,54,77),(44,62,53,80),(45,64,52,78),(46,66,56,71),(47,68,60,74),(48,70,59,72),(49,67,58,75),(50,69,57,73)]])
Matrix representation of (C22×C4)⋊F5 ►in GL4(𝔽41) generated by
5 | 10 | 32 | 19 |
22 | 27 | 32 | 13 |
28 | 9 | 14 | 19 |
22 | 9 | 31 | 36 |
22 | 0 | 3 | 3 |
38 | 19 | 38 | 0 |
0 | 38 | 19 | 38 |
3 | 3 | 0 | 22 |
22 | 1 | 31 | 38 |
3 | 25 | 4 | 34 |
7 | 10 | 32 | 11 |
30 | 37 | 40 | 21 |
40 | 40 | 40 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
40 | 40 | 40 | 40 |
G:=sub<GL(4,GF(41))| [5,22,28,22,10,27,9,9,32,32,14,31,19,13,19,36],[22,38,0,3,0,19,38,3,3,38,19,0,3,0,38,22],[22,3,7,30,1,25,10,37,31,4,32,40,38,34,11,21],[40,1,0,0,40,0,1,0,40,0,0,1,40,0,0,0],[1,0,0,40,0,0,1,40,0,0,0,40,0,1,0,40] >;
(C22×C4)⋊F5 in GAP, Magma, Sage, TeX
(C_2^2\times C_4)\rtimes F_5
% in TeX
G:=Group("(C2^2xC4):F5");
// GroupNames label
G:=SmallGroup(320,254);
// by ID
G=gap.SmallGroup(320,254);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,219,675,297,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c^2,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^2,c*d=d*c,e*c*e^-1=a*b*c^-1,e*d*e^-1=d^3>;
// generators/relations
Export